NDSU Dept \#2880 - PO Box 6050
Fargo, ND 58108-6050
Tel 701-231-8058 - Fax 701-231-6265
www.ugpti.org - www.atacenter.org

# Interstate Operations Study: Fargo-Moorhead Metropolitan Area 

## 2015 Simulation Output

## Technical Memorandum III

July 2009

Prepared for:
Fargo-Moorhead Council of Governments
(Metro COG)

Prepared by:
Advanced Traffic Analysis Center
Upper Great Plains Transportation Institute
North Dakota State University
Fargo, North Dakota

## EXECUTIVE SUMMARY

This document provides the simulation results for the 2015 planning horizon of the FargoMoorhead Interstate Operations Study. Previous material focused on the simulation development process (Technical Memorandum I) and the calibration process and the simulation results of the 2008 base cases (Technical Memorandum II). Major sections of this document include the network modifications, traffic demand, and simulation results for the 2015 peak-hour scenarios. The simulation analysis will produce numerical data and animation to evaluate freeway operations that incorporate several improvements from the 2008 base cases.

The simulation study area includes all of the freeway interchanges of I-29 and I-94 within the cities of Fargo, ND; West Fargo, ND; and Moorhead, MN. Ten interchanges were modeled with local roadways along the 15 -mile portion of I-94 and 7 interchanges along the 9 -mile portion of I29. The simulation analysis was performed using PTV AG's VISSIM simulation program.

The freeway mainline densities that experienced congestion were generally along I-94 east of I29. The highest density values for the 2015 AM scenario were along the westbound sections of $\mathrm{I}-94$ from $34^{\text {th }}$ St. (Moorhead, MN) to I-29, which exhibited densities between $29 \mathrm{pc} / \mathrm{mi} / \mathrm{In}$ to 36 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ (LOS D-E). For the 2015 PM scenario, the highest density values were along the eastbound sections of I-94 from $25^{\text {th }}$ St. (Fargo, ND) to $8^{\text {th }}$ St. (Moorhead, MN) with densities ranging from $29 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $32 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ (LOS D).

The I-29 \& I-94 Interchange experienced a significant number of vehicles during the 2015 peak periods. Although the interchange did not experience congestion during the AM peak period, significant congestion developed at the tri-level merge area during the PM peak period. Over 2,200 vehicles from two ramps (tri-level and southeast ramps) merged into one lane during the PM peak-hour period, causing significant queue lengths to develop. During the 2008 PM scenario, the average maximum length was just over $2,000 \mathrm{ft}$, which grew to over $5,500 \mathrm{ft}$ for the 2015 PM scenario. The congestion at this area during the 2008 PM occurred for 15 to 20 minutes, while the 2015 PM scenario experienced congestion throughout the entire peak hour.

The construction of the I-94 \& $9^{\text {th }} \mathrm{St} / 57^{\text {th }}$ St. Interchange, which was included in the 2015 scenarios, improved the operations of both the I-94 \& Sheyenne St. Interchange and I-94 and $45^{\text {th }}$ St. Interchange. In addition, the construction of the auxiliary lanes between I-29 and 45 ${ }^{\text {th }}$ St. improved traffic operations during the PM peak period, which eliminated the queues that developed during the 2008 scenarios for the westbound section.

The I-94 \& $8^{\text {th }}$ St. (TH 75) Interchange was the only ramp terminal that experienced significant congestion for the 2015 scenarios. During the 2015 AM scenario, the north ramp experienced congestion due to the high number of vehicles making northbound left-turn and southbound right-turn movements (both of which are accessing westbound I-94). During the 2015 PM, the south ramp experienced congestion from the high number of vehicles traveling eastbound along $\mathrm{I}-94$ and taking the $8^{\text {th }} \mathrm{St}$. off-ramp. In addition to having a high delay time for the off-ramp traffic, the traffic queues back onto I-94 and had an average maximum queue length of over $5,600 \mathrm{ft}$.

## TABLE OF CONTENTS

Overview ..... 1
2015 Simulation Study Area ..... 1
Network Conditions ..... 2
I-29 \& 52 ${ }^{\text {nd }}$ Ave. S. Interchange ..... 2
I-94 \& $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. Interchange ..... 3
I-94 \& $34^{\text {th }}$ St. Interchange ..... 4
I-94 \& $45^{\text {th }}$ St. Interchange ..... 4
$\mathrm{I}-94$ between $45^{\text {th }}$ St. and I-29. ..... 5
Traffic Control Devices ..... 5
Traffic Volume Information ..... 5
Origin-Destination Demands ..... 6
Vehicle Composition ..... 9
Peak Hour Origin-Destination Demand ..... 9
Simulation Duration ..... 9
Simulation Error Checking ..... 9
Simulation Calibration ..... 10
2015 VISSIM Output ..... 10
2015 AM Output ..... 10
2015 PM Output ..... 13
Summary ..... 16
Appendix A: 2015 AM Simulation Output (Network Performance, Travel Time, Freeway Queues) ..... A-1
Appendix B: 2015 AM Simulation Output (Data Collection Points) ..... B-1
Appendix C: 2015 AM Simulation Output (Node Evaluations) ..... C-1
Appendix D: 2015 PM Simulation Output (Network Performance, Travel Time, Freeway Queues) ..... D-1
Appendix E: 2015 PM Simulation Output (Data Collection Points) ..... E-1
Appendix F: 2015 PM Simulation Output (Node Evaluations) ..... F-1

## LIST OF TABLES

Table 1. Interstate Mainline Average Daily Traffic Comparison (Modeled 2005 and 2015) ..... 6
Table 2. Travel Demand Model Comparisons (2005 AM Base Case and 2005 AM ME) ..... 7
Table 3. Travel Demand Model Comparisons (2005 PM Base Case and 2005 PM ME) ..... 7
Table 4. Travel Demand Model Comparisons (2005 AM Base Case and 2015 AM) ..... 7
Table 5. Travel Demand Model Comparisons (2005 PM Base Case and 2015 PM) ..... 8
Table 6. Travel Demand Model Comparisons (2015 AM Base Case and 2015 AM ME) ..... 8
Table 7. Travel Demand Model Comparisons (2015 PM Base Case and 2015 PM ME) ..... 8
Table 8. Freeway Queue Measurement Locations (2008 AM and 2015 AM) ..... 11
Table 9. Freeway Mainline Density ( 2008 AM and 2015 AM) ..... 11
Table 10. Freeway Queue Measurement Locations (2008 PM and 2015 PM) ..... 13
Table 11. Freeway Mainline Density ( 2008 PM and 2015 PM) ..... 14
LIST OF FIGURES
Figure 1. 2015 F-M IOS VISSIM network (differences from 2008 base case are noted) ..... 1
Figure 2. $1-29 \& 52^{\text {nd }}$ Ave. S. Interchange ( 2015 VISSIM) ..... 2
Figure 3. I-94 \& Sheyenne St. Interchange (2015 VISSIM) ..... 3
Figure $4.1-94 \& 9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. Interchange (2015 VISSM) ..... 3
Figure 5. I-94 \& 34th St. Interchange (2015 VISSIM) ..... 4
Figure 6. I-94 \& $45^{\text {th }}$ St. Interchange ( 2015 VISSIM) ..... 4
Figure 7. I-94 between $45^{\text {th }}$ St. and I-29 (2015 VISSIM) ..... 5
Figure 8. I-29 \& I-94 Interchange Density Values (2008 AM and 2015 AM) ..... 12
Figure 9. I-29 \& I-94 Interchange Density Values (2008 PM and 2015 PM) ..... 15

## OVERVIEW

This document provides information related to the 2015 simulation scenario for the FargoMoorhead Interstate Operations Study (F-M IOS). Previous material focused on the simulation development process, calibration process, and the simulation results of the 2008 AM and PM base cases (Technical Memorandums I and II). The major sections of this document include the network modifications, traffic demand, and the simulation output for the 2015 AM and PM peak-hour scenarios.

## 2015 SIMULATION STUDY AREA

The simulation study area includes all of the freeway interchanges of Interstate 29 (I-29) and Interstate 94 (I-94) within the cities of Fargo, ND; West Fargo, ND; and Moorhead, MN (Figure 1). Ten interchanges will be modeled with local roadways along the 15 mile portion of I-94 and 7 interchanges along the 9 mile portion of I-29. The simulation analysis, which uses PTV AG's VISSIM 5.1, will produce numerical data and animation to evaluate the freeway operations that will incorporate several short-term improvements, which will be incorporated by 2015.


Figure 1. 2015 F-M IOS VISSIM network (differences from 2008 base case are noted)

## NETWORK CONDITIONS

Several interchanges were modified to replicate the 2015 freeway conditions. The 2015 conditions include all of the freeway projects that were under construction in 2008 and those that are included in the F-M 2010-2013 Transportation Improvement Program (TIP). In 2008, the I-29 \& $52^{\text {nd }}$ Ave. S. Interchange was reconstructed and the I-94 \& Sheyenne St. Interchange was changed to signalized control. In 2009, two interchanges will be constructed: I-94 \& $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. and I-94 \& $34^{\text {th }}$ St. The $\mathrm{I}-94 \& 34^{\text {th }}$ St. Interchange will replace the existing I-94 \& Main Ave. Interchange (Moorhead, MN). In 2010, the I-94 \& $45^{\text {th }}$ St. Interchange will be modified and auxiliary lanes will be constructed along I-94 between $45^{\text {th }}$ St. and I-29.

Some speed limit zones will also be adjusted for this study area. The 75 mph zone on the west side of I-94 has been moved from west of $45^{\text {th }}$ St. to west of Sheyenne St. This was performed due to the additional interchange at $9^{\text {th }} \mathrm{St} . / 57^{\text {th }} \mathrm{St}$. In addition, the 75 mph zone on the south side of I-29 has been moved from south of $52^{\text {nd }}$ Ave. S. to just south of $32^{\text {nd }}$ Ave. S. Due to the reconstruction of the $52^{\text {nd }}$ Ave. S. interchange in 2008, the work zone had a 55 mph speed limit.

Since this study's focus relates to evaluating the freeway operations, the details of the signal timing and arterial roadways are not critical to the study. However, these data will be beneficial for future simulation projects within the F-M area. Descriptions and VISSIM screenshots of the 2015 network are provided in the following sections.

## I-29 \& 52 ${ }^{\text {nd }}$ Ave. S. Interchange

- Updated Geometry: $52^{\text {nd }}$ Ave. S., SB off-ramp, NB off-ramp
- New Geometry: SE loop-ramp, NW loop-ramp
- Updated Traffic Control: Signal phasing/timing, vehicle detectors (both ramp terminals)


Figure 2. $1-29$ \& $52^{\text {nd }}$ Ave. S. Interchange (2015 VISSIM)

## I-94 \& Sheyenne St. Interchange

- Updated Traffic Control: Signal phasing/timing, vehicle detectors (both ramp terminals)


Figure 3. I-94 \& Sheyenne St. Interchange (2015 VISSIM)

## I-94 \& $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. Interchange

- New Geometry: $9^{\text {th }}$ St. overpass, EB off-ramp, WB off-ramp, NE loop-ramp, SW loop ramp
- New Traffic Control: Signal phasing/timing, vehicle detectors (both ramp terminals)


Figure 4. I-94 \& $9^{\text {th }}$ St./57 ${ }^{\text {th }}$ St. Interchange (2015 VISSM)

## I-94 \& 34 ${ }^{\text {th }}$ St. Interchange

- Updated/new Geometry: Main Ave. SE., $34^{\text {th }}$ St., EB off-ramp, WB off-ramp, NE loop-ramp, SE loop-ramp
- Updated/new Traffic Control: Signal phasing/timing, vehicle detectors (both ramp terminals)


Figure 5. I-94 \& 34th St. Interchange (2015 VISSIM)

## $\mathrm{I}-94 \& 45^{\text {th }}$ St. Interchange

- New Geometry: $45^{\text {th }}$ St. overpass, NE loop-ramp, WB off-ramp and left turn will have 2 lanes
- Updated Traffic Control: Signal phasing/timing, vehicle detectors (north ramp)


Figure 6. I-94 \& 45 ${ }^{\text {th }}$ St. Interchange (2015 VISSIM)

## I-94 between $45^{\text {th }}$ St. and I-29

- Updated Geometry: Incorporate auxiliary lanes for eastbound and westbound traffic


Figure 7. I-94 between $45^{\text {th }}$ St. and I-29 (2015 VISSIM)

## TRAFFIC CONTROL DEVICES

Most of the ramp terminals located within the metro area are controlled by traffic signals. The signal timing data for the 2008 AM and 2008 PM peak periods were used for the 2015 AM and 2015 PM simulation scenarios. In addition to modeling the original 23 traffic signals, new traffic signals were incorporated at the I-94 \& $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. Interchange, I-94 \& Sheyenne St. Interchange, and I-94 \& $34^{\text {th }}$ St. Interchange (note: signals at the I-94 \& Main Ave. SE Interchange were removed from the network). In addition, the I-94 \& $45^{\text {th }}$ St. North Ramp had phase/timing modifications due to the geometric changes that will occur in 2010.

## TRAFFIC VOLUME INFORMATION

Based on the projected socio-economic data, which include employment and household data, traffic volume will continue to increase within the F-M metro area, especially to the south and west. This is evident when comparing the average daily traffic (ADT) between the 2005 base case (which is the travel demand model's calibrated base case) and the 2015 forecast. Daily traffic volume increases along I-29 range from $3 \%$ to $50 \%$, while I-94 volume increases range from $12 \%$ to $40 \%$ (Table 1).

Table 1. Interstate Mainline Average Daily Traffic Comparison (Modeled 2005 and 2015)

| Interstate 29 | Combined Mainline Traffic |  |  |
| :---: | :---: | :---: | :---: |
| Freeway Mainline | 2005 | 2015 | \% Change |
| CR 20-19 ${ }^{\text {th }}$ Ave. N | 17,847 | 21,908 | 23\% |
| $19^{\text {th }}$ Ave. $\mathrm{N}-12^{\text {th }}$ Ave. N | 21,880 | 22,472 | 3\% |
| $12^{\text {th }}$ Ave. N - Main Ave. | 33,088 | 37,995 | 15\% |
| Main Ave. - $13^{\text {th }}$ Ave. S | 41,569 | 46,073 | 11\% |
| $13^{\text {th }}$ Ave. S - I-94 | 58,436 | 61,036 | 4\% |
| I-94-32 ${ }^{\text {nd }}$ Ave. S | 37,297 | 42,027 | 13\% |
| $32^{\text {nd }}$ Ave. S - 52 ${ }^{\text {nd }}$ Ave. S | 22,575 | 33,780 | 50\% |
| Interstate 94 | Combined Mainline Traffic |  |  |
| Freeway Mainline | 2005 | 2015 | \% Change |
| Main Ave. - Sheyenne St. | 17,781 | 22,499 | 27\% |
| Sheyenne St. - 9th St. $/ 57^{\text {th }}$ St. | - | 26,266 | - |
| $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. $-45^{\text {th }} \mathrm{St}$. | 26,512 | 32,905 | 24\% |
| $45^{\text {th }}$ St. - I-29 | 38,650 | 54,282 | 40\% |
| $1-29-25^{\text {th }}$ St. | 59,277 | 71,027 | 20\% |
| $25^{\text {th }}$ St. - University Dr. | 58,442 | 65,607 | 12\% |
| University Dr. - $8^{\text {th }}$ St. (TH 75) | 54,919 | 62,165 | 13\% |
| $8^{\text {th }}$ St. (TH 75) $-20^{\text {th }} \mathrm{St}$. | 35,950 | 45,885 | 28\% |
| $20^{\text {th }} \mathrm{St} .-34^{\text {th }} \mathrm{St}$. | 25,003 | 31,773 | 27\% |
| $34^{\text {th }}$ St. - MN 336 | 26,389 | 31,853 | 21\% |

## Origin-Destination Demands

Several issues can develop when using travel demand models for performing peak-hour analyses. Most regional planning models are based on daily trip generation. Therefore, the hourly matrix is a percentage of the daily matrix. Based on past analysis of hourly traffic data, the daily traffic for F-M regional planning model is divided into the following groups: AM peak hour (7.5\%), PM peak hour (8.5\%), and off peak ( $6 \%$ for 14 hours). The PM peak-hour traffic portion of the daily traffic ( $8.5 \%$ ) is an approximate percentage of traffic on a regional level; however, peak-hour percentages for different areas and facility types vary significantly. Based on reviewing hourly data along freeway portions of the F-M area, the PM peak hour represents about $10 \%$ of the ADT. If $8.5 \%$ of the daily traffic was used to represent the freeway traffic during the PM peak-hour conditions (rather than 10\%), the travel demand model would under estimate traffic by almost $17.5 \%$.

To overcome the peak-hour traffic issue and to evaluate different planning horizons, target values can be incorporated into the planning model. Most planning models are capable of performing this function by assigning the proper amount of traffic to the network (sub-area) based on traffic counts in the field. Evaluating future planning horizons may be difficult since the base model may not generate enough traffic to replicate peak-hour conditions. Therefore, future peak-hour targets (counts) may be required. It should be noted that the primary function of a travel demand model is to provide traffic conditions on a regional level based on socioeconomic data and network changes. When corridor studies are conducted, which use a sub-
area network of the model, the accuracy of model output can be significantly improved by using field data.

The 2008 AM and PM simulation scenarios incorporated field counts into the regional travel demand model. Target values were based on AM and PM peak-hour counts, which were primarily conducted in April of 2008. The target values were incorporated into a sub-area network, which included all freeway interchanges and mainline sections of the travel demand model (2005 base year), to replicate the existing traffic levels. Coding was performed to incorporate Cube's Matrix Estimator (ME) logic, producing an O-D matrix that satisfied the target values for both the 2008 AM and PM scenarios. To achieve the study area's target values, which were on the freeway mainlines, ramps, and arterials intersecting the freeways, the subarea's O-D matrices from the 2008 AM and PM using ME were higher than the 2005 base model by $11.9 \%$ and $40.0 \%$ (Table 2 and Table 3).

Table 2. Travel Demand Model Comparisons (2005 AM Base Case and 2005 AM ME)

| AM Peak Hour Origin-Destination Matrix | Trips | \% Change |
| :---: | :---: | :---: |
| 2005 Base Model (Calibrated Base Case) | 26,455 | $11.9 \%$ |
| 2008 AM ME - 2005 Base Model with Target <br> Values (2008 Field Counts) Using ME | 29,593 |  |

Table 3. Travel Demand Model Comparisons (2005 PM Base Case and 2005 PM ME)

| PM Peak Hour Origin-Destination Matrix | Trips | \% Change |
| :---: | :---: | :---: |
| 2005 Base Model (Calibrated Base Case) | 25,443 | $40.0 \%$ |
| 2008 PM ME - 2005 Base Model with Target <br> Values (2008 Field Counts) Using ME | 35,622 |  |

The large difference between the 2005 PM case and the 2008 PM ME case can be explained by two reasons. First, the travel demand model is underestimating PM peak-hour traffic (at least for this study area consisting of the freeway facilities). Second, the traffic volume for the study area has increased since 2005. Therefore, using target values were essential in producing a realistic O-D matrix.

Unlike the 2008 AM and PM simulation scenarios, the 2015 AM and PM scenarios do not have target values based on field data. When comparing the sub-area network's O-D matrix between the 2005 base model and the forecasted traffic from the 2015 model, vehicle-trips increased $27.3 \%$ for the AM peak and $18.7 \%$ for the PM peak (Table 4 and Table 5). It should be noted that the 2008 PM case (which used field counts as targets) had more trips than the 2015 PM forecast.

Table 4. Travel Demand Model Comparisons (2005 AM Base Case and 2015 AM)

| AM Peak Hour Origin-Destination Matrix | Trips | \% Change |
| :---: | :---: | :---: |
| 2005 Base Model (Calibrated Base Case) | 26,455 | 27.3\% |
| 2015 Forecast - 2015 Model Network and Socio-economic Data | 33,685 |  |

Table 5. Travel Demand Model Comparisons (2005 PM Base Case and 2015 PM)

| PM Peak Hour Origin-Destination Matrix | Trips | \% Change |
| :---: | :---: | :---: |
| 2005 Base Model (Calibrated Base Case) | 25,443 | 18.7\% |
| 2015 Forecast - 2015 Model Network and Socio-economic Data | 30,207 |  |

To produce more realistic peak-hour traffic volume, target values were incorporated into the 2015 AM and 2015 PM travel demand model's sub-area networks. Initially, only the 2015 PM scenario was analyzed and documented; however, at the request of the study's steering review committee (SRC), the 2015 AM scenario was also analyzed. Since several network changes were introduced into the 2015 network, target values were used at the boundaries of the analysis network and areas adjacent to the I-29 \& I-94 Interchange. Due to the significant level of development for the southern portion of the study area, a target value was not used for this boundary section. A list of the locations incorporating target values is as follows:

- CR 20-19th Ave. N (mainline sections, northern boundary)
- Main Ave. - Sheyenne St. (mainline sections, western boundary)
- 34th St. - MN 336 (mainline sections, eastern boundary)
- 13th Ave. S - I-94 (mainline sections, north of I-29 \& I-94 Interchange)
- I-94-32nd Ave. S (mainline sections, south of I-29 \& I-94 Interchange)
- 45th St. - I-29 (mainline sections, west of I-29 \& I-94 Interchange)
- I-29-25th St. (mainline sections, east of I-29 \& I-94 Interchange))
- Tri-level/SE Ramp (tri-level merge area)
- I-94 and $8^{\text {th }}$ St. Interchange (eastbound off-ramp)
- I-94 and $25^{\text {th }}$ St. Interchange (eastbound off-ramp)

Note: The 2015 AM scenario also included target values for all mainline, on-ramp, and off-ramp segments north and east of the I-29 and I-94 Interchange.

To account for conservative traffic growth from 2008 to 2015, an average growth rate of $1.75 \%$ was used for the 7 year period, providing a $12 \%$ increase to the 2008 field counts. The 2015 target volumes were entered into the sub-area networks and Cube's ME was used to provide updated O-D matrices. The target values produced sub-area O-D matrices for the 2015 AM and 2015 PM scenarios that deferred from the original 2015 AM and PM forecasts by $-7.1 \%$ and $6.9 \%$, respectively (Table 6 and 7 ).

Table 6. Travel Demand Model Comparisons (2015 AM Base Case and 2015 AM ME)

| AM Peak Hour Origin-Destination Matrix | Trips | \% Change |
| :---: | :---: | :---: |
| 2015 AM Forecast | 33,685 | $-7.1 \%$ |
| 2015 AM ME - 2015 Forecast with Target Values <br> (2008 Field Counts With a Growth Factor) Using ME | 31,278 |  |

Table 7. Travel Demand Model Comparisons (2015 PM Base Case and 2015 PM ME)

| PM Peak Hour Origin-Destination Matrix | Trips | \% Change |
| :---: | :---: | :---: |
| 2015 PM Forecast | 30,207 | $6.9 \%$ |
| 2015 PM ME - 2015 Forecast with Target Values <br> (2008 Field Counts With a Growth Factor) Using ME | 32,305 |  |

In contrast to the previous trip comparisons, the 2015 AM ME trips were lower than the 2015 AM Forecast. Although the PM peak-hour traffic is generally higher than the AM peak-hour traffic, the AM O-D matrices are higher than the PM O-D matrices for both the 2005 and 2015 regional models. Upon further review, the various peak-period factors of the F-M regional travel demand model, such as percentage of ADT that occurs in each peak hour based on trip type [home-based work (HBW), home-based other (HBO), and non-home based (NHB)] and the home-based school (HBS) trip generation rates, generate more trips during the AM peak hour than the PM peak hour. Therefore, the 2015 AM ME trips were lower than those of the 2015 AM Forecast while the 2015 PM ME trips were higher than those of the 2015 PM Forecast. For future peak-hour studies, the average peak-hour percentages of the ADT (7.53 for the AM peak and 8.52 for the PM peak) could be adjusted to more accurately reflect the peak-hour counts.

It should also be noted that the 2015 PM ME is less than the 2008 PM ME. This occurrence is due to the fact that target values with growth factors were not used for all of the sub-area's links, which is unlike the 2008 AM and 2008 PM scenarios. Since none of the arterial links were factored for the 2015 AM ME and PM ME runs, the overall O-D matrix can be significantly different.

After performing the ME procedure, the 2015 AM and PM peak-hour matrices were adjusted to account for pass-through trips based on the 2008 external O-D study. The higher of the two external-external freeway trip values between the ME O-D matrix and the O-D study matrix were used in the 2015 simulation scenarios.

## Vehicle Composition

Similar to the 2008 AM and PM simulation scenarios, the 2015 AM and PM scenarios incorporated both passenger car and truck O-D matrices. The traffic composition for both 2015 simulation scenarios consisted of passenger cars (95\%), tractor-trailer trucks (3\%), and singleunit trucks (2\%). These vehicle percentages were applied to the O-D matrices.

## Peak Hour Origin-Destination Demand

To account for the variation in traffic demand within the peak-hour periods, the peak-hour O-D matrices were factored at 5 -minute intervals. The 2015 simulation scenarios used the same OD factors as their respective 2008 simulation scenario.

## SIMULATION DURATION

The simulation duration followed the same procedure as the 2008 AM and PM scenarios. The major components of the two and a half hour simulation are as follows:

- 30-minute off-peak traffic to load traffic into the network
(The numerical output will not be collected during this period)
- 60-minute peak-hour traffic with 12, 5 -minute periods
- 30-minute off peak to clear any congestion from the peak-hour period (The duration of this period may increase based on the severity of congestion)
- 30-minutes of no traffic demand to ensure all vehicles complete their trip


## SIMULATION ERROR CHECKING

Since most of the simulation network was already developed, error checking for the 2015 scenario focused on the modifications that were made to the original networks. Similar to the 2008 AM and PM scenarios, screen shots of the simulation network were captured and reviewed to ensure all of the network elements were incorporated. In addition, the simulation animation was reviewed, which primarily focused on traffic control and driving behavior.

Error checking also focused on the simulated traffic volume. The simulation output was reviewed to determine if the model was producing the desired traffic based on the O-D matrices. In addition, PTV AG's VISUM travel demand model was used to read/review the VISSIM O-D paths to ensure that invalid paths did not exist.

## SIMULATION CALIBRATION

Calibration is the process of adjusting the simulation model's parameters to reproduce local driver behavior and traffic performance characteristics. The 2008 AM and PM simulation scenarios followed an extensive calibration process (Technical Memorandum II). The process primarily focused on VISSIM's driving behavior, which include car-following and lane-changing models. The 2015 simulation scenarios incorporated the calibration parameters of the 2008 scenarios.

Based on reviewing the simulation animation, two significant changes were incorporated into the 2015 PM simulation scenario. The eastbound off-ramp of the I-94 \& 8 ${ }^{\text {th }}$ St. Interchange experienced significant congestion due to capacity constraints. To help alleviate some of the congestion, the traffic signal plan was adjusted to provide off-ramp traffic with 80 seconds of green time, which doubled the original green time. In addition, the driving behavior of the mainline link serving the eastbound off-ramp was changed to allow more realistic lane changing behavior (more aggressive). Otherwise, queues were observed from the $8^{\text {th }}$ St. off-ramp back (upstream) to University Dr.

## 2015 VISSIM OUTPUT

Similar to the 2008 AM and PM base scenarios, several measures of effectiveness (MOE) were extracted from the 2015 simulation scenarios. The 2015 AM output is provided in Appendices A-C while the 2015 PM output is provided in Appendices D-F. The values reported for each MOE are averaged from the 30 runs. The project team identified several measures and locations which are summarized as follows:

- Overall Network - vehicle trips, travel time, delay time, etc.
- Interchange Ramps - turning movement volume, delay time, queue length, etc.
- Routes/Locations - vehicle trips, travel time, speed, etc.

Since the O-D matrices were significantly different between the 2008 scenarios and the 2015 scenarios, direct comparisons related to the overall network and interchange node data should not be performed. In addition, the speed limit changes made to portions of I-94 and I-29 for the 2015 network will affect the travel time output for the pass-through trips. However, comparisons related to freeway queue lengths and mainline data collection (especially those with target values) will be performed in this report.

## 2015 AM Output

Freeway queue length was measured at the tri-level merge area and westbound I-94 between $45^{\text {th }}$ St. and I-29 primarily because these two freeway locations experienced congestion during the 2008 PM scenario. Similar to the 2008 AM scenario, the 2015 AM scenario does not experience congestion at these locations (Table 8). To improve traffic operations for I-94 westbound traffic between $\mathrm{I}-29$ and $45^{\text {th }}$ St., an auxiliary lane will be constructed in 2010. The auxiliary lane will provide more benefits for the PM peak period.

Table 8. Freeway Queue Measurement Locations (2008 AM and 2015 AM)

| Simulation <br> Scenario | Tri-Level Merge |  |  | I-94 WB (45th St) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. (ft) | Max. (ft) | Stops | Avg. $(\mathrm{ft})$ | Max. (ft) | Stops |
| 2008 PM | 0 | 98 | 1 | 0 | 31 | 1 |
| 2015 PM | 1 | 174 | 3 | 0 | 0 | 0 |

The freeway densities of the 2015 AM scenario were higher than those of the 2008 AM scenario (Table 9). Density values for $\mathrm{I}-94$ and $\mathrm{I}-29$ ranged from $4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $36 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ and $5 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $27 \mathrm{pc} / \mathrm{mi} / \mathrm{In}$, respectively. The highest density values were along the section of I-94 from $34^{\text {th }}$ St. to I-29, which exhibited densities between $29 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $36 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ (LOS D-E).

Table 9. Freeway Mainline Density (2008 AM and 2015 AM)

| I-29 Freeway Mainline | Northbound ( $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ ) |  | Southbound (pc/mi/ln) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2008 AM | 2015 AM | 2008 AM | 2015 AM |
| CR 20-19th Ave. N | 4 | 5 | 8 | 9 |
| 19th Ave. $\mathrm{N}-12 \mathrm{th}$ Ave. N | 9 | 10 | 10 | 11 |
| 12th Ave. N - Main Ave. | 18 | 20 | 11 | 12 |
| Main Ave. - 13th Ave. S | 24 | 27 | 13 | 14 |
| 13th Ave. S - I-94 | 23 | 26 | 10 | 11 |
| I-94-32nd Ave. S | 19 | 22 | 9 | 10 |
| 32nd Ave. S - 52nd Ave. S | 17 | 21 | 5 | 12 |
| I-94 Freeway Mainline | Eastbound (pc/mi/ln) |  | Westbound (pc/mi/ln) |  |
|  | 2008 AM | 2015 AM | 2008 AM | 2015 AM |
| Main Ave. - Sheyenne St. | 3 | 4 | 6 | 7 |
| Sheyenne St. - 9th St/57th St. | 12 | 11 | 9 | 10 |
| 9th St/57th St. - 45th St. |  | 19 |  | 12 |
| 45th St. - I-29 | 27 | 20 | 24 | 17 |
| I-29-25th St. | 19 | 21 | 27 | 31 |
| 25th St. - University Dr. | 20 | 23 | 28 | 31 |
| University Dr. - TH 75 | 17 | 19 | 29 | 33 |
| TH 75-20th St. | 16 | 18 | 32 | 36 |
| 20th St. - 34th St. | 11 | 13 | 25 | 29 |
| 34th St. - MN 336 | 4 | 6 | 15 | 17 |

Note: The yellow highlighted sections represent a LOS D, orange sections represent a LOS E.

Density values for the 2015 AM scenario also increased for several ramps at the I-29 \& I-94 Interchange, especially for the northeast ramp and southeast loop ramp (Figure 7). The northeast ramp had a high density value ( $39 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ ) since it served the most vehicles $(1,570)$ during the AM peak period. The southeast loop ramp reported a high density ( $49 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ ) since it served 879 vehicles and had a low speed due to the geometric design of the loop ramp. When viewing the simulation's animation, congestion was not observed on the ramps. However, congestion would develop occasionally on the westbound weaving segment accessing the northeast ramp.


Figure 8. I-29 \& I-94 Interchange Density Values (2008 AM and 2015 AM) Note: LOS D (Yellow), LOS E (Orange), LOS F (Red) - Weaving Segment Methodology

During the 2008 AM scenario, some ramp terminals experienced congestion for at least one movement/approach. By 2015, several geometric and traffic control modifications will be performed to improve traffic operations. The 2008 AM congested areas that were improved in the 2015 AM network include the following:

- I-94 \& Sheyenne St. North Ramp: Improved due to new traffic control and $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. interchange
- I-94 \& Sheyenne St. South Ramp: southbound left-turn movement improved due to new traffic control and $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. interchange. Northbound approach incurs more delay due to signal installation.

Traffic congestion continued to be evident at the I-94 \& 8 ${ }^{\text {th }}$ St. (TH 75) North Ramp during the 2015 AM scenario. A significant amount of traffic travels westbound from the ramp and significant queues develop for the northbound left-turn movement and the southbound right-turn movements.

## 2015 PM Output

As previously discussed, queue length measurements were collected at the tri-level merge area and westbound I-94 weaving section between $45^{\text {th }} \mathrm{St}$. and I-29 based on congestion experienced during the 2008 PM peak-hour period. The tri-level merge area during the 2015 PM scenario experienced average and maximum queue lengths of $2,323 \mathrm{ft}$ and $5,506 \mathrm{ft}$, respectively (Table 10). These queue lengths are significantly greater than the 2008 PM scenario, which was already experiencing oversaturated conditions for a portion of the peak hour. Therefore, the additional traffic (12\% more than the 2008 PM peak-hour volume) modeled during the 2015 PM scenario created major operational issues.

To improve traffic operations for I-94 westbound traffic between I-29 and 45 ${ }^{\text {th }}$ St., an auxiliary lane will be constructed in 2010. The 2008 PM simulation scenario experienced some congestion at this area. Incorporating the auxiliary lane into the 2015 PM simulation scenario eliminated the queues that developed in the 2008 PM scenario (Table 10).

Table 10. Freeway Queue Measurement Locations (2008 PM and 2015 PM)

| Simulation <br> Scenario | Tri-Level Merge |  |  | I-94 WB (45th St) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. (ft) | Max. (ft) | Stops | Avg. (ft) | Max. (ft) | Stops |
| 2008 PM | 184 | 2,027 | 454 | 19 | 439 | 49 |
| 2015 PM | 2,323 | 5,506 | 3,201 | 0 | 0 | 0 |

The freeway densities of the 2015 PM scenario were generally higher than those of the 2008 PM scenario (Table 11). Density values for I-94 and I-29 ranged from $3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $32 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ and $7 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $22 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$, respectively. The highest density values were along the section of $\mathrm{I}-94$ from $8^{\text {th }}$ St. (TH 75) to $\mathrm{I}-29$, which exhibited densities between $29 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $32 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ (LOS D).

Table 11. Freeway Mainline Density (2008 PM and 2015 PM)

| I-29 Freeway Mainline | Northbound (pc/mi/ln) |  | Southbound (pc/mi/ln) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2008 PM | 2015 PM | 2008 PM | 2015 PM |
| CR 20-19th Ave. N | 9 | 10 | 6 | 7 |
| 19th Ave. $\mathrm{N}-12 \mathrm{th}$ Ave. N | 11 | 9 | 9 | 8 |
| 12th Ave. N - Main Ave. | 14 | 13 | 17 | 16 |
| Main Ave. - 13th Ave. S | 15 | 15 | 27 | 22 |
| 13th Ave. S - I-94 | 14 | 16 | 19 | 22 |
| I-94-32nd Ave. S | 13 | 15 | 10 | 11 |
| 32nd Ave. S - 52nd Ave. S | 9 | 13 | 10 | 17 |
| I-94 Freeway Mainline | Eastbound (pc/mi/ln) |  | Westbound (pc/mi/ln) |  |
|  | 2008 PM | 2015 PM | 2008 PM | 2015 PM |
| Main Ave. - Sheyenne St. | 5 | 5 | 2 | 3 |
| Sheyenne St. - 9th St/57th St. | 8 | 9 | 10 | 7 |
| 9th St/57th St. - 45th St. |  | 12 |  | 13 |
| 45th St. - I-29 | 25 | 17 | 26 | 17 |
| I-29-25th St. | 26 | 29 | 22 | 23 |
| 25th St. - University Dr. | 24 | 29 | 21 | 22 |
| University Dr. - TH 75 | 26 | 32 | 20 | 23 |
| TH 75-20th St. | 24 | 27 | 19 | 22 |
| 20th St. - 34th St. | 19 | 16 | 15 | 12 |
| 34th St. - MN 336 | 10 | 11 | 7 | 7 |

Note: The highlighted sections represent a LOS D.
Density values for the 2015 PM scenario also increased for several ramps at the I-29 \& I-94 Interchange, especially for the tri-level and southeast ramp. The highest density and most congested area for the 2015 PM scenario (which was the same for the 2008 PM scenario) occurred at the tri-level merge area (Figure 8). Over 2,200 vehicles from two ramps (tri-level and southeast ramps) merged into one lane during the 2015 PM peak-hour analysis period, creating a density of $71 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$. The congestion at this area occurred throughout the PM peak.


Figure 9. I-29 \& I-94 Interchange Density Values (2008 PM and 2015 PM) Note: LOS D (Yellow), LOS E (Orange), LOS F (Red) - Weaving Segment Methodology

During the 2008 PM scenario, several ramp terminals experienced congestion for at least one movement/approach. Most of these locations were along I-94 between Sheyenne St. and I-29. By 2015, the NDDOT will perform several geometric and traffic control modifications within this area to improve traffic operations. The 2008 PM congested areas that were significantly improved in the 2015 PM network include the following:

- I-94 \& Sheyenne St. North Ramp: Improved due to new traffic control and $9^{\text {th }}$ St. $/ 57^{\text {th }}$ St. interchange
- I-94 \& $45^{\text {th }}$ St. North Ramp: Improved due to modified traffic control and geometry, as well as the $9^{\text {th }} \mathrm{St} . / 57^{\text {th }}$ St. interchange
- I-94 \& $45^{\text {th }}$ St. South Ramp: Improved due to modified traffic control and geometry, as well as the $9^{\text {th }} \mathrm{St} . / 57^{\text {th }}$ St. interchange

Traffic congestion increased at the I-94 \& 8 ${ }^{\text {th }}$ St. (TH 75) Interchange during the 2015 PM scenario. Congestion for the eastbound off-ramp existed during the 2008 PM scenario, which was compounded due to the increased traffic volume in the 2015 PM scenario (12\% growth
from 2008). Traffic queued significantly at the ramp signal throughout the peak-hour period. In addition the southbound right-turn and northbound left-turn movements at the north ramp experienced significant congestion.

## SUMMARY

This document provided the simulation output of the 2015 AM and PM scenarios for the FargoMoorhead Interstate Operations Study. These scenarios provide insight into potential traffic operational issues that may occur in the 2015 planning horizon. Based on the simulation output, the proposed near-term improvements to the freeway system reduced congestion along $\mathrm{I}-94$ west of I-29 during the PM peak-hour period. However, congestion at the tri-level merge area (average maximum queue of $5,506 \mathrm{ft}$ ) and the $\mathrm{I}-94$ \& $8^{\text {th }} \mathrm{St}$. (TH 75) eastbound off-ramp (average maximum queue of $5,647 \mathrm{ft}$ ) increased significantly from the 2008 PM scenario.

During the 2015 AM scenario, the highest density values were along the westbound portion of I94 from $34^{\text {th }}$ St. to $\mathrm{I}-29$, which exhibited densities between $29 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $36 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ (LOS D-E). Some congestion also developed on the westbound I-94 weaving segment accessing the northeast ramp of the I-29 \& I-94 Interchange due to number of vehicles traveling westbound to northbound during the AM peak-hour period $(1,570)$.

For the 2015 PM scenario, the highest density values were along the eastbound portion of I-94 from I-29 to $8^{\text {th }}$ St. (TH 75), which exhibited densities between $29 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ to $32 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ (LOS D). The highest density for both peak periods occurred at the tri-level ramp and southeast ramp merge area. Over 2,200 vehicles from two ramps (tri-level and southeast ramps) merged into one lane during the PM peak-hour analysis period, creating a density of $71 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$. In addition, congestion at this area occurred throughout the PM peak period compared to 15 to 20 minutes during the 2008 PM scenario.

# Appendix A: 2015 AM Simulation Output (Network Performance, Travel Time, Freeway Queues) 

| Network Performance |  |
| :---: | :---: |
| Total Delay Time (hr) 402 <br> Total Travel Time (hr) 3,747 <br> Number of Active Vehicles 0 <br> Number of Arrived Vehicles 44,524 <br> Total Stopped Delay (hr) 150 <br> Total Distance Traveled (mi) 182,640 |  |

Queue Measurement

| Time | Tri-Level Merge |  |  | I-94 WB (45th St) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. | Max. | Stop | Avg. | Max. | Stop |
| AM Peak | 1 | 174 | 3 | 0 | 0 | 0 |

Travel Time (Network)


## Appendix B: 2015 AM Simulation Output (Data Collection Points)

## I-29 Data Collection: 2015 AM Peak Hour

Southbound



Peak-hour factor $=.78$
This data increased the original density by $25 \%$.

I-94 Data Collection: 2015 AM Peak Hour

Eastbound



2015 AM: Data Collection Points (I-29/I-94 Interchange)

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 Vol. (vph) | 854 | 287 | 510 | 175 | 498 | 754 | 567 | 1065 | 183 | 1362 |
| 2015 Sim. Vol. (vph) | 978 | 336 | 589 | 203 | 561 | 881 | 644 | 1204 | 282 | 1570 |
| Volume \% Difference | $15 \%$ | $17 \%$ | $16 \%$ | $16 \%$ | $13 \%$ | $17 \%$ | $13 \%$ | $13 \%$ | $54 \%$ | $15 \%$ |
| Speed (mph) | 58 | 54 | 24 | 55 | 54 | 24 | 54 | 55 | 25 | 53 |
| \# of Lanes | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Density (pc/mi/ln) | 11 | 8 | 32 | 5 | 14 | 49 | 16 | 29 | 15 | 39 |

This data increased the original density by $25 \%$.
$\square=$ Target Growth Percentage of $12 \%$

## Appendix C: 2015 AM Simulation Output (Node Evaluations)

|  | Node Location: |  |  | I-94 \& Sheyenne St (N. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  | 71 |  |  | 224 | 155 | 272 |  |  | 605 | 50 |
| Delay Time/Veh. (s) |  |  | 6.9 |  |  | 3.4 | 5.8 | 0.4 |  |  | 3.6 | 2.0 |
| Max Queue (ft) |  |  | 122 |  |  | 3 | 163 | 32 |  |  | 307 | 0 |
| Avg. Queue (ft) |  |  | 3 |  |  | 3 | 3 | 0 |  |  | 12 | 0 |
|  |  |  |  |  |  |  |  | rsect | Del | (sec/ |  | 11.7 |
|  | Node | cation |  | -94 \& | eye | St | Side) |  |  |  |  |  |
|  |  | Appro |  |  | Appro |  |  | Appro |  |  | Appro |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 9 | 0 | 33 |  |  |  |  | 417 | 170 | 424 | 252 |  |
| Delay Time/Veh. (s) | 26.7 | 0 | 5.5 |  |  |  |  | 15.4 | 6.8 | 17.2 | 1.2 |  |
| Max Queue (ft) | 111 | 0 | 111 |  |  |  |  | 540 | 131 | 458 | 124 |  |
| Avg. Queue (ft) | 2 | 0 | 2 |  |  |  |  | 56 | 1 | 60 | 1 |  |
|  |  |  |  |  |  |  |  | rsectio | Dela | (sec/v |  | 11.7 |

Node Location: $\quad$ I-94 \& 9th St (N. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 118 |  | 229 | 44 | 332 |  |  | 498 | 66 |
| Delay Time/Veh. (s) |  |  |  | 35.9 |  | 5.8 | 40.0 | 2.9 |  |  | 5.8 | 2.4 |
| Max Queue (ft) |  |  |  | 171 |  | 163 | 145 | 145 |  |  | 199 | 0 |
| Avg. Queue (ft) |  |  |  | 24 |  | 15 | 13 | 13 |  |  | 11 | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 6.6 |


|  | Node Location: |  |  | I-94 \& 9th St (S. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 27 |  | 76 |  |  |  |  | 348 | 532 |  | 381 | 237 |
| Delay Time/Veh. (s) | 35.5 |  | 4.3 |  |  |  |  | 2.1 | 3.4 |  | 2.5 | 0.8 |
| Max Queue (ft) | 118 |  | 128 |  |  |  |  | 137 | 0 |  | 160 | 237 |
| Avg. Queue (ft) | 6 |  | 5 |  |  |  |  | 3 | 0 |  | 4 | 5 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 2.6 |


|  | Node Location: |  |  | I-94 \& 45th St (N. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 308 | 0 | 1035 |  | 547 | 54 |  | 433 | 135 |
| Delay Time/Veh. (s) |  |  |  | 36.0 | 0 | 12.3 |  | 6.5 | 0.5 |  | 10.0 | 1.7 |
| Max Queue (ft) |  |  |  | 383 | 0 | 31 |  | 227 | 228 |  | 314 | 314 |
| Avg. Queue (ft) |  |  |  | 49 | 0 | 0 |  | 12 | 11 |  | 24 | 24 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 11.0 |


|  | Node Location: |  |  | I-94 \& 45th St (S. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 167 | 0 | 7 |  |  |  |  | 434 | 883 |  | 420 | 322 |
| Delay Time/Veh. (s) | 37.9 | 0 | 6.8 |  |  |  |  | 24.3 | 30.2 |  | 12.0 | 1.4 |
| Max Queue (ft) | 258 | 0 | 134 |  |  |  |  | 588 | 588 |  | 220 | 234 |
| Avg. Queue (ft) | 43 | 0 | 1 |  |  |  |  | 146 | 146 |  | 15 | 14 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 19.7 |



|  | Node Location: |  |  | I-94 \& 25th St (S. Side) |  |  | NB Approach |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  |  |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 80 | 114 | 92 | 43 | 12 | 311 | 295 | 772 | 3 | 75 | 373 | 174 |
| Delay Time/Veh. (s) | 39.1 | 40.7 | 5.0 | 46.2 | 41.0 | 11.1 | 11.2 | 8.5 | 8.1 | 6.7 | 5.7 | 2.2 |
| Max Queue (ft) | 296 | 296 | 128 | 145 | 145 | 271 | 431 | 451 | 4 | 115 | 159 | 303 |
| Avg. Queue (ft) | 50 | 50 | 3 | 13 | 13 | 24 | 23 | 33 | 0 | 2 | 9 | 3 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 10.9 |

Node Location: I-94 \& University Dr (N. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 362 |  | 450 |  | 1088 | 260 |  | 378 | 364 |
| Delay Time/Veh. (s) |  |  |  | 40.9 |  | 14.0 |  | 9.1 | 1.2 |  | 5.2 | 0.6 |
| Max Queue (ft) |  |  |  | 270 |  | 389 |  | 467 | 294 |  | 215 | 0 |
| Avg. Queue (ft) |  |  |  | 60 |  | 65 |  | 39 | 1 |  | 9 | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 10.9 |


|  | Node Location: |  |  | I-94 \& University Dr (S. Side) |  |  |  |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  |  |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 634 |  | 308 |  |  |  |  | 724 | 315 |  | 562 | 173 |
| Delay Time/Veh. (s) | 41.5 |  | 8.2 |  |  |  |  | 7.0 | 0.5 |  | 4.3 | 0.5 |
| Max Queue (ft) | 415 |  | 213 |  |  |  |  | 249 | 0 |  | 245 | 205 |
| Avg. Queue (ft) | 104 |  | 24 |  |  |  |  | 19 | 0 |  | 9 | 15 |
|  |  |  |  |  |  |  |  | rsect | Del | (sec/ |  | 13.1 |



Node Location: I-94 \& 8th St/TH75 (S. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 951 |  | 273 |  |  |  |  | 1528 | 173 | 97 | 214 |  |
| Delay Time/Veh. (s) | 36.1 |  | 6.3 |  |  |  |  | 82.4 | 54.8 | 35.4 | 11.9 |  |
| Max Queue (ft) | 1275 |  | 192 |  |  |  |  | 2611 | 176 | 223 | 193 |  |
| Avg. Queue (ft) | 172 |  | 13 |  |  |  |  | 1052 | 6 | 14 | 10 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 55.1 |


|  | Node Location: |  |  | I-94 \& 20th St (N. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 30 | 5 | 20 | 203 | 525 | 77 | 31 | 122 | 284 |
| Delay Time/Veh. (s) |  |  |  | 3.2 | 1.5 | 4.1 | 2.7 | 0.8 | 0.9 | 5.3 | 0.4 | 2.7 |
| Max Queue (ft) |  |  |  | 43 | 43 | 43 | 180 | 180 | 180 | 0 | 0 | 0 |
| Avg. Queue (ft) |  |  |  | 0 | 0 | 0 | 26 | 26 | 26 | 0 | 0 | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 1.7 |


| Node Location: | I-94 \& 20th St (S. Side) |
| :--- | :--- |


|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 346 |  | 104 |  |  |  |  | 459 |  |  | 127 |  |
| Delay Time/Veh. (s) | 12.9 |  | 4.6 |  |  |  |  | 9.9 |  |  | 16.0 |  |
| Max Queue (ft) | 284 |  | 7 |  |  |  |  | 432 |  |  | 181 |  |
| Avg. Queue (ft) | 31 |  | 7 |  |  |  |  | 37 |  |  | 13 |  |
|  |  |  |  |  |  |  |  | sectio | Delay | ec/ |  | 10.8 |

Node Location: $\quad$ I-94 \& 34th St (N. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 48 |  | 140 |  | 715 | 478 | 418 | 123 |  |
| Delay Time/Veh. (s) |  |  |  | 21.4 |  | 6.6 |  | 6.5 | 29.7 | 1.5 | 8.2 |  |
| Max Queue (ft) |  |  |  | 139 |  | 24 |  | 239 | 516 | 128 | 128 |  |
| Avg. Queue (ft) |  |  |  | 9 |  | 0 |  | 56 | 89 | 0 | 5 |  |

Node Location: $\quad$ I-94 \& 34th St (S. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 225 |  | 418 |  | 775 | 50 | 9 | 161 |  |
| Delay Time/Veh. (s) |  |  |  | 60.3 |  | 10.9 |  | 8.7 | 2.0 | 71.6 | 7.3 |  |
| Max Queue (ft) |  |  |  | 387 |  | 387 |  | 313 | 94 | 126 | 126 |  |
| Avg. Queue (ft) |  |  |  | 77 |  | 77 |  | 26 | 1 | 7 | 7 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 15.7 |

Node Location: $\quad$ I-94 \& MN 336 (N. Side)

|  | EB Approach |  |  | WB Approach |  |  |  | NB Approach |  |  | SB Approach |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Volume |  |  |  | 18 | 0 | 64 | 45 | 255 |  |  | 73 | 625 |  |
| Delay Time/Veh. (s) |  |  |  | 7.4 | 0 | 7.0 | 0.7 | 0.1 |  |  | 1.4 | 2.5 |  |
| Max Queue (ft) |  |  |  | 8 | 0 | 8 | 0 | 0 |  |  | 0 | 0 |  |
| Avg. Queue (ft) |  |  |  | 8 | 0 | 8 | 0 | 0 |  |  | 0 | 0 |  |

Node Location: I-94 \& MN 336 (S. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 24 |  | 202 |  | 98 | 10 | 49 | 42 |  |
| Delay Time/Veh. (s) |  |  |  | 8 |  | 1 |  | 0 | 1 | 1 | 0 |  |
| Max Queue (ft) |  |  |  | 4 |  | 4 |  | 0 | 0 | 16 | 16 |  |
| Avg. Queue (ft) |  |  |  | 0 |  | 0 |  | 0 | 0 | 0 | 0 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 1.0 |

Node Location:

| EB Approach |  |  | WB Approach |  | NB Approach |  |  | SB Approach |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 211 | 75 | 125 | 169 |  |  |  |  | 126 |  | 175 |
| Delay Time/Veh. (s) |  | 0.8 | 1.8 | 1.3 | 1.1 |  |  |  |  | 11.9 |  | 9.2 |
| Max Queue (ft) |  | 0 | 0 | 28 | 28 |  |  |  |  | 10 |  | 10 |
| Avg. Queue (ft) |  | 0 | 0 | 0 | 0 |  |  |  |  | 10 |  | 10 |

Node Location: $\quad$ I-29 \& CR 20 (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 74 | 262 |  |  | 233 | 64 | 61 |  | 121 |  |  |  |
| Delay Time/Veh. (s) | 1.1 | 0.9 |  |  | 0.6 | 1.4 | 11.2 |  | 9.3 |  |  |  |
| Max Queue (ft) | 74 | 74 |  |  | 0 | 0 | 9 |  | 9 |  |  |  |
| Avg. Queue (ft) | 0 | 0 |  |  | 0 | 0 | 9 |  | 9 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 2.9 |

Node Location: $\quad$ I-29 \& 19 Ave N (W. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 29 | 536 |  |  | 347 | 568 |  |  |  | 134 |  | 2 |
| Delay Time/Veh. (s) | 2.8 | 4.6 |  |  | 4.6 | 3.3 |  |  |  | 12.0 |  | 0.8 |
| Max Queue (ft) | 0 | 181 |  |  | 200 | 289 |  |  |  | 169 |  | 0 |
| Avg. Queue (ft) | 0 | 10 |  |  | 6 | 1 |  |  |  | 11 |  | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 4.7 |

Node Location: $\quad$ I-29 \& 19 Ave N (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 650 | 22 |  | 866 | 31 | 48 |  | 779 |  |  |  |
| Delay Time/Veh. (s) |  | 9.2 | 0.3 |  | 9.3 | 0.9 | 22.7 |  | 10.1 |  |  |  |
| Max Queue (ft) |  | 246 | 208 |  | 361 | 0 | 168 |  | 246 |  |  |  |
| Avg. Queue (ft) |  | 22 | 5 |  | 42 | 0 | 7 |  | 43 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 9.6 |

Node Location: I-29 \& 12th Ave N (W. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 175 | 113 |  | 752 | 278 |  |  |  | 142 |  | 97 |
| Delay Time/Veh. (s) |  | 2.8 | 0.6 |  | 4.1 | 0.9 |  |  |  | 33.4 |  | 3.0 |
| Max Queue (ft) |  | 104 | 0 |  | 242 | 105 |  |  |  | 207 |  | 195 |
| Avg. Queue (ft) |  | 2 | 0 |  | 14 | 0 |  |  |  | 32 |  | 7 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 5.7 |

Node Location: I-29 \& 12th Ave N (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 282 | 36 |  | 506 | 55 | 523 |  | 830 |  |  |  |
| Delay Time/Veh. (s) |  | 3.9 | 0.2 |  | 8.8 | 0.6 | 26.7 |  | 9.6 |  |  |  |
| Max Queue (ft) |  | 118 | 154 |  | 235 | 0 | 272 |  | 290 |  |  |  |
| Avg. Queue (ft) |  | 4 | 0 |  | 19 | 0 | 59 |  | 58 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 12.3 |


|  | Node Location: |  |  | I-29 \& Main Ave (W. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 923 | 212 |  | 807 | 182 |  |  |  | 93 | 0 | 166 |
| Delay Time/Veh. (s) |  | 3.3 | 4.0 |  | 1.5 | 0.6 |  |  |  | 41.7 | 0.0 | 6.3 |
| Max Queue (ft) |  | 207 | 207 |  | 131 | 257 |  |  |  | 154 | 0 | 139 |
| Avg. Queue (ft) |  | 11 | 11 |  | 4 | 1 |  |  |  | 19 | 0 | 7 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 4.3 |

Node Location: I-29 \& Main Ave (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 862 | 152 |  | 595 | 56 | 395 | 0 | 703 |  |  |  |
| Delay Time/Veh. (s) |  | 4.9 | 0.4 |  | 5.7 | 6.8 | 38.2 | 0.0 | 9.6 |  |  |  |
| Max Queue (ft) |  | 277 | 248 |  | 193 | 193 | 266 | 0 | 259 |  |  |  |
| Avg. Queue (ft) |  | 15 | 1 |  | 12 | 12 | 60 | 0 | 48 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 10.8 |

Node Location: I-29 \& 38th St

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 303 | 0 | 27 | 0 | 99 | 166 | 105 | 26 |  |
| Delay Time/Veh. (s) |  |  |  | 15.4 | 0 | 4.4 | 0.0 | 4.3 | 1.6 | 4.8 | 4.2 |  |
| Max Queue (ft) |  |  |  | 174 | 0 | 112 | 0 | 117 | 110 | 132 | 132 |  |
| Avg. Queue (ft) |  |  |  | 21 | 0 | 2 | 0 | 2 | 0 | 3 | 3 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 8.3 |

Node Location: $\quad$ I-29 \& 13th Ave S (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 67 | 848 | 170 |  | 909 | 256 | 270 | 260 | 541 |  |  |  |
| Delay Time/Veh. (s) | 41.9 | 9.4 | 0.1 |  | 16.0 | 5.8 | 29.1 | 41.3 | 13.0 |  |  |  |
| Max Queue (ft) | 156 | 292 | 149 |  | 370 | 0 | 412 | 411 | 416 |  |  |  |
| Avg. Queue (ft) | 17 | 26 | 0 |  | 49 | 0 | 76 | 82 | 86 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 15.8 |

Node Location: $\quad$ I-29 \& 32nd Ave S (W. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 568 | 172 | 227 | 1000 |  |  |  |  | 347 |  | 453 |
| Delay Time/Veh. (s) |  | 13.6 | 2.5 | 48.8 | 8.4 |  |  |  |  | 40.0 |  | 10.8 |
| Max Queue (ft) |  | 292 | 0 | 507 | 523 |  |  |  |  | 298 |  | 312 |
| Avg. Queue (ft) |  | 32 | 0 | 77 | 35 |  |  |  |  | 59 |  | 50 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 16.8 |

Node Location: I-29 \& 32nd Ave S (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 710 | 208 |  | 914 | 847 | 312 |  | 248 |  |  |  |
| Delay Time/Veh. (s) |  | 6.3 | 1.3 |  | 15.6 | 8.3 | 38.3 |  | 12.6 |  |  |  |
| Max Queue (ft) |  | 328 | 294 |  | 968 | 215 | 420 |  | 422 |  |  |  |
| Avg. Queue (ft) |  | 18 | 15 |  | 109 | 28 | 87 |  | 59 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 12.7 |


|  | Node Location: |  |  | -29 \& 52nd Ave S (W. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 841 | 106 |  | 1174 | 97 |  |  |  | 254 |  | 516 |
| Delay Time/Veh. (s) |  | 6.5 | 1.2 |  | 5.6 | 1.1 |  |  |  | 29.3 |  | 1.5 |
| Max Queue (ft) |  | 217 | 217 |  | 266 | 277 |  |  |  | 204 |  | 0 |
| Avg. Queue (ft) |  | 15 | 15 |  | 18 | 3 |  |  |  | 33 |  | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 6.8 |


|  | Node Location: |  |  | I-29 \& 52nd Ave S (E. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 573 | 521 |  | 1109 | 864 | 161 |  | 100 |  |  |  |
| Delay Time/Veh. (s) |  | 3.1 | 3.4 |  | 6.3 | 4.4 | 35.8 |  | 1.7 |  |  |  |
| Max Queue (ft) |  | 196 | 236 |  | 402 | 402 | 253 |  | 0 |  |  |  |
| Avg. Queue (ft) |  | 5 | 13 |  | 33 | 33 | 39 |  | 0 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 6.1 |

# Appendix D: 2015 PM Simulation Output (Network Performance, Travel Time, Freeway Queues) 

| Network Performance |  |
| :---: | :---: |
| Total Delay Time (hr) 494 <br> Total Travel Time (hr) 4,189 <br> Number of Active Vehicles 0 <br> Number of Arrived Vehicles 48,262 <br> Total Stopped Delay (hr) 164 <br> Total Distance Traveled (mi) 201,592 |  |

Queue Measurement

| Time | Tri-Level Merge |  |  | I-94 WB (45th St) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. | Max. | Stop | Avg. | Max. | Stop |
| PM Peak | 2,323 | 5,506 | 3,201 | 0 | 0 | 0 |

Travel Time (Network)


# Appendix E: 2015 PM Simulation Output (Data Collection Points) 



| Northbound | North |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | $-1 \Delta \Delta$ |  |  |  |  | $r \angle \gg$ |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CR 20 |  |  |  |  | 19th Ave. N |  |  |  | 12th Ave. N |  |  |  |  | Main Ave. |  |  |  |  |  | 13th Ave. S |  |  |  |  | I-94 |  |  |  |  | 32nd Ave. S |  |  |  |  | 52nd Ave. S |  |  |  |  |  |
| Distance (ft) | 8050 | 650 | 1885 | 1150 | 7140 | 1165 | 1045 | 1015 | 2520 | 830 | 921 | 765 | 580 | 2190 | 525 | 745 | 570 | 655 | 760 | 1930 | 685 | 755 | 665 | 1310 | 2100 | 910 | 505 | 485 | 1260 | 990 | 1495 |  | 1450 | 860 | 720 | 7100 | 760 | 775 | 595 | 800 | 1675 |
| 2008 Vol. (vph) |  |  |  |  | 1155 |  |  |  | 1644 |  |  |  |  | 2025 |  |  |  |  |  | 2129 |  |  |  |  | 2763 |  |  |  |  |  | 1952 |  |  |  |  | 924 |  |  |  |  |  |
| 2015 Sim. Vol. (vph) |  |  |  |  | 1314 |  |  |  | 1345 |  |  |  |  | 1948 |  |  |  |  |  | 2244 |  |  |  |  | 3110 |  |  |  |  |  | 2177 |  |  |  |  | 1629 |  |  |  |  |  |
| Volume \% Difference |  |  |  |  | 14\% |  |  |  | -18\% |  |  |  |  | -4\% |  |  |  |  |  | 5\% |  |  |  |  | 13\% |  |  |  |  |  | 12\% |  |  |  |  | 76\% |  |  |  |  |  |
| Speed (mph) |  |  |  |  | 74.1 |  |  |  | 59.1 |  |  |  |  | 58.1 |  |  |  |  |  | 58.2 |  |  |  |  | 58.8 |  |  |  |  |  | 58.5 |  |  |  |  | 73.5 |  |  |  |  |  |
| \# of Lanes |  |  |  |  | 2 |  |  |  | 3 |  |  |  |  | 3 |  |  |  |  |  | 3 |  |  |  |  | 4 |  |  |  |  |  | 3 |  |  |  |  | 2 |  |  |  |  |  |
| Density ( $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ ) |  |  |  |  | 10 |  |  |  | 9 |  |  |  |  | 13 |  |  |  |  |  | 15 |  |  |  |  | 16 |  |  |  |  |  | 15 |  |  |  |  | 13 |  |  |  |  |  |
| Level of Service |  |  |  |  | B |  |  |  | A |  |  |  |  | B |  |  |  |  |  | B |  |  |  |  | B |  |  |  |  |  | B |  |  |  |  | B |  |  |  |  |  |

I-94 Data Collection: 2015 PM Peak Hour

Eastbound



Note: Density values were adjusted using the following data:
Peak-hour factor $=.87$
Heavy vehicle percent $=5$
This data increased the original density by $15 \%$.


2015 PM: Data Collection Points (I-29/I-94 Interchange)

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 Vol. (vph) | 2139 | 604 | 390 | 203 | 471 | 354 | 1542 | 2013 | 154 | 1135 |
| 2015 Sim. Vol. (vph) | 2408 | 666 | 433 | 230 | 533 | 387 | 1701 | 2226 | 298 | 1373 |
| Volume \% Difference | $13 \%$ | $10 \%$ | $11 \%$ | $13 \%$ | $13 \%$ | $9 \%$ | $10 \%$ | $11 \%$ | $94 \%$ | $21 \%$ |
| Speed (mph) | 46 | 54 | 25 | 55 | 54 | 25 | 36 | 37 | 25 | 53 |
| \# of Lanes | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Density (pc/mi/ln) | 31 | 15 | 21 | 5 | 12 | 18 | 55 | 71 | 14 | 30 |

This data increased the original density by $25 \%$.
$\square=$ Target Growth Percentage of $12 \%$

## Appendix F: 2015 PM Simulation Output (Node Evaluations)

|  | Node Location: |  |  | I-94 \& Sheyenne St (N. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  | 123 |  |  | 322 | 40 | 152 |  |  | 435 | 10 |
| Delay Time/Veh. (s) |  |  | 6.5 |  |  | 3.3 | 2.7 | 0.2 |  |  | 4.2 | 1.0 |
| Max Queue (ft) |  |  | 143 |  |  | 183 | 63 | 0 |  |  | 230 | 0 |
| Avg. Queue (ft) |  |  | 5 |  |  | 12 | 0 | 0 |  |  | 10 | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 7.9 |


|  | Location: I-94 \& Sheyenne St (S. Side) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 28 | 0 | 79 |  |  |  |  | 163 | 95 | 297 | 262 |  |
| Delay Time/Veh. (s) | 18.8 | 0.0 | 6.5 |  |  |  |  | 11.5 | 1.6 | 13.5 | 2.8 |  |
| Max Queue (ft) | 146 | 0 | 146 |  |  |  |  | 200 | 0 | 284 | 154 |  |
| Avg. Queue (ft) | 6 | 0 | 6 |  |  |  |  | 11 | 0 | 30 | 3 |  |
|  |  |  |  |  |  |  |  | rsectio | Dela | (sec/v |  | 7.9 |

Node Location: I-94 \& 9th St (N. Side)

|  | EB Approach |  |  | WB Approach |  |  |  | NB Approach |  |  | SB Approach |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Volume |  |  |  | 161 |  | 419 | 33 | 222 |  |  | 443 | 23 |  |
| Delay Time/Veh. (s) |  |  |  | 34.4 |  | 8.8 | 39.7 | 3.2 |  |  | 6.4 | 2.4 |  |
| Max Queue (ft) |  |  |  | 233 |  | 232 | 134 | 134 |  |  | 176 | 0 |  |
| Avg. Queue (ft) |  |  |  | 42 |  | 37 | 10 | 10 |  |  | 11 | 0 |  |



|  | Node Location: |  |  | I-94 \& 45th St (N. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 644 | 0 | 849 |  | 227 | 26 |  | 1041 | 178 |
| Delay Time/Veh. (s) |  |  |  | 38.4 | 0.0 | 9.9 |  | 6.8 | 0.2 |  | 12.8 | 5.0 |
| Max Queue (ft) |  |  |  | 637 | 0 | 101 |  | 118 | 201 |  | 750 | 750 |
| Avg. Queue (ft) |  |  |  | 108 | 0 | 0 |  | 6 | 4 |  | 91 | 91 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 12.0 |


|  | Node Location: |  |  | I-94 \& 45th St (S. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 87 | 0 | 5 |  |  |  |  | 165 | 647 |  | 932 | 750 |
| Delay Time/Veh. (s) | 30.7 | 0.0 | 7.5 |  |  |  |  | 2.3 | 3.9 |  | 1.9 | 3.5 |
| Max Queue (ft) | 163 | 0 | 63 |  |  |  |  | 245 | 245 |  | 309 | 234 |
| Avg. Queue (ft) | 17 | 0 | 0 |  |  |  |  | 14 | 14 |  | 8 | 30 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 3.2 |



|  | Node Location: |  |  | I-94 \& 25th St (S. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 110 | 211 | 315 | 34 | 16 | 208 | 279 | 382 | 1 | 102 | 612 | 496 |
| Delay Time/Veh. (s) | 40.1 | 43.1 | 11.3 | 49.6 | 42.9 | 6.5 | 14.2 | 10.1 | 5.4 | 7.6 | 12.4 | 5.7 |
| Max Queue (ft) | 587 | 587 | 355 | 140 | 140 | 171 | 270 | 254 | 0 | 133 | 359 | 330 |
| Avg. Queue (ft) | 98 | 98 | 21 | 12 | 12 | 9 | 24 | 18 | 0 | 4 | 32 | 11 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 13.0 |

Node Location: I-94 \& University Dr (N. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 482 |  | 479 |  | 712 | 300 |  | 857 | 554 |
| Delay Time/Veh. (s) |  |  |  | 39.3 |  | 12.4 |  | 4.4 | 0.9 |  | 8.2 | 2.8 |
| Max Queue (ft) |  |  |  | 336 |  | 347 |  | 285 | 218 |  | 559 | 0 |
| Avg. Queue (ft) |  |  |  | 75 |  | 66 |  | 12 | 0 |  | 44 | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 8.8 |


|  | Node Location: |  |  | I-94 \& University Dr (S. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 488 |  | 481 |  |  |  |  | 525 | 526 |  | 935 | 404 |
| Delay Time/Veh. (s) | 39.2 |  | 13.0 |  |  |  |  | 6.8 | 0.7 |  | 10.6 | 1.2 |
| Max Queue (ft) | 310 |  | 342 |  |  |  |  | 236 | 0 |  | 341 | 205 |
| Avg. Queue (ft) | 75 |  | 56 |  |  |  |  | 16 | 0 |  | 35 | 22 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 10.4 |


|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 136 | 0 | 237 | 472 | 1278 |  |  | 821 | 1040 |
| Delay Time/Veh. (s) |  |  |  | 30.8 | 0.0 | 13.2 | 32.7 | 9.4 |  |  | 46.9 | 39.0 |
| Max Queue (ft) |  |  |  | 298 | 0 | 206 | 929 | 794 |  |  | 2000 | 2153 |
| Avg. Queue (ft) |  |  |  | 43 | 0 | 12 | 182 | 72 |  |  | 467 | 609 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 18.9 |

Node Location: I-94 \& 8th St/TH75 (S. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 989 |  | 923 |  |  |  |  | 764 | 74 | 185 | 774 |  |
| Delay Time/Veh. (s) | 31.1 |  | 58.9 |  |  |  |  | 49.7 | 4.8 | 48.1 | 23.7 |  |
| Max Queue (ft) | 1878 |  | 5647 |  |  |  |  | 729 | 116 | 370 | 520 |  |
| Avg. Queue (ft) | 379 |  | 2002 |  |  |  |  | 217 | 2 | 55 | 81 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 41.6 |


|  | Node Location: |  |  | I-94 \& 20th St (N. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 123 | 10 | 15 | 334 | 541 | 65 | 14 | 230 | 533 |
| Delay Time/Veh. (s) |  |  |  | 6.5 | 1.7 | 4.9 | 9.0 | 1.0 | 1.1 | 12.1 | 6.5 | 15.5 |
| Max Queue (ft) |  |  |  | 118 | 118 | 118 | 180 | 180 | 180 | 193 | 193 | 193 |
| Avg. Queue (ft) |  |  |  | 0 | 0 | 0 | 32 | 32 | 32 | 6 | 6 | 6 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 7.0 |

Node Location:

| EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
|  | 472 |  | 502 |  |  |  |  | 466 |  |  | 241 |
|  | 13.5 |  | 9.3 |  |  |  |  | 15.4 |  |  | 16.8 |

Node Location: $\quad$ I-94 \& 34th St (N. Side)

|  | EB Approach |  |  | WB Approach |  |  |  | NB Approach |  |  | SB Approach |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Volume |  |  |  | 33 |  | 42 |  | 336 | 140 | 237 | 171 |  |  |
| Delay Time/Veh. (s) |  |  |  | 14.4 |  | 5.4 |  | 0.3 | 6.8 | 1.2 | 4.4 |  |  |
| Max Queue (ft) |  |  |  | 119 |  | 0 |  | 220 | 194 | 119 | 119 |  |  |
| Avg. Queue (ft) |  |  |  | 3 |  | 0 |  | 22 | 5 | 0 | 3 |  |  |

Node Location: I-94 \& 34th St (S. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 187 |  | 243 |  | 233 | 77 | 24 | 180 |  |
| Delay Time/Veh. (s) |  |  |  | 56.8 |  | 7.1 |  | 11.8 | 2.2 | 58.9 | 6.3 |  |
| Max Queue (ft) |  |  |  | 284 |  | 284 |  | 168 | 107 | 130 | 130 |  |
| Avg. Queue (ft) |  |  |  | 58 |  | 58 |  | 10 | 2 | 11 | 11 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 17.6 |

Node Location: $\quad$ I-94 \& MN 336 (N. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 23 | 0 | 59 | 30 | 446 |  |  | 121 | 292 |
| Delay Time/Veh. (s) |  |  |  | 7.9 | 0.0 | 7.2 | 0.6 | 0.2 |  |  | 0.7 | 1.5 |
| Max Queue (ft) |  |  |  | 119 | 0 | 119 | 0 | 0 |  |  | 0 | 0 |
| Avg. Queue (ft) |  |  |  | 3 | 0 | 3 | 0 | 0 |  |  | 0 | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 1.2 |

Node Location: I-94 \& MN 336 (S. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 25 |  | 413 |  | 63 | 11 | 82 | 62 |  |
| Delay Time/Veh. (s) |  |  |  | 8.0 |  | 1.3 |  | 0.0 | 0.9 | 0.5 | 0.2 |  |
| Max Queue (ft) |  |  |  | 8 |  | 8 |  | 0 | 0 | 16 | 16 |  |
| Avg. Queue (ft) |  |  |  | 0 |  | 0 |  | 0 | 0 | 0 | 0 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 1.2 |



Node Location: $\quad$ I-29 \& CR 20 (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 182 | 222 |  |  | 174 | 122 | 84 |  | 156 |  |  |  |
| Delay Time/Veh. (s) | 1.2 | 1.5 |  |  | 0.8 | 2.3 | 12.1 |  | 10.1 |  |  |  |
| Max Queue (ft) | 44 | 44 |  |  | 0 | 0 | 199 |  | 199 |  |  |  |
| Avg. Queue (ft) | 0 | 0 |  |  | 0 | 0 | 5 |  | 5 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 3.8 |

Node Location: $\quad$ I-29 \& 19 Ave N (W. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 47 | 334 |  |  | 477 | 509 |  |  |  | 182 |  | 3 |
| Delay Time/Veh. (s) | 2.8 | 5.0 |  |  | 5.5 | 2.0 |  |  |  | 12.3 |  | 1.3 |
| Max Queue (ft) | 0 | 150 |  |  | 196 | 253 |  |  |  | 186 |  | 0 |
| Avg. Queue (ft) | 0 | 7 |  |  | 10 | 1 |  |  |  | 15 |  | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 5.0 |

Node Location: I-29 \& 19 Ave N (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 513 | 3 |  | 935 | 330 | 51 |  | 314 |  |  |  |
| Delay Time/Veh. (s) |  | 5.6 | 0.2 |  | 6.1 | 1.6 | 19.3 |  | 6.8 |  |  |  |
| Max Queue (ft) |  | 167 | 194 |  | 279 | 0 | 127 |  | 148 |  |  |  |
| Avg. Queue (ft) |  | 10 | 8 |  | 26 | 0 | 6 |  | 14 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 5.7 |

Node Location: $\quad \mathrm{I}-29$ \& 12th Ave N (W. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 286 | 559 |  | 451 | 667 |  |  |  | 112 |  | 31 |
| Delay Time/Veh. (s) |  | 2.5 | 1.8 |  | 2.1 | 2.1 |  |  |  | 33.5 |  | 1.5 |
| Max Queue (ft) |  | 135 | 0 |  | 175 | 190 |  |  |  | 179 |  | 133 |
| Avg. Queue (ft) |  | 3 | 0 |  | 4 | 1 |  |  |  | 25 |  | 1 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 3.7 |

Node Location: $\quad$ I-29 \& 12th Ave N (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 352 | 46 |  | 818 | 158 | 299 |  | 509 |  |  |  |
| Delay Time/Veh. (s) |  | 3.2 | 0.2 |  | 6.5 | 1.0 | 30.5 |  | 7.5 |  |  |  |
| Max Queue (ft) |  | 133 | 135 |  | 302 | 0 | 214 |  | 224 |  |  |  |
| Avg. Queue (ft) |  | 5 | 0 |  | 25 | 0 | 41 |  | 25 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 9.0 |


|  | Node Location: |  |  | I-29 \& Main Ave (W. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 586 | 493 |  | 851 | 611 |  |  |  | 149 | 0 | 186 |
| Delay Time/Veh. (s) |  | 3.4 | 4.9 |  | 2.4 | 2.1 |  |  |  | 42.0 | 0.0 | 6.1 |
| Max Queue (ft) |  | 245 | 245 |  | 156 | 239 |  |  |  | 175 | 0 | 157 |
| Avg. Queue (ft) |  | 14 | 14 |  | 6 | 0 |  |  |  | 30 | 0 | 9 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 5.2 |

Node Location: I-29 \& Main Ave (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 634 | 107 |  | 1257 | 190 | 203 | 0 | 389 |  |  |  |
| Delay Time/Veh. (s) |  | 2.2 | 0.3 |  | 4.3 | 6.0 | 42.7 | 0.0 | 6.7 |  |  |  |
| Max Queue (ft) |  | 274 | 309 |  | 347 | 347 | 197 | 0 | 179 |  |  |  |
| Avg. Queue (ft) |  | 7 | 3 |  | 26 | 26 | 37 | 0 | 16 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 6.9 |

Node Location: I-29 \& 38th St

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  |  |  | 411 | 0 | 18 | 0 | 71 | 592 | 309 | 67 |  |
| Delay Time/Veh. (s) |  |  |  | 15.2 | 0.0 | 4.3 | 0.0 | 5.2 | 6.2 | 7.8 | 4.9 |  |
| Max Queue (ft) |  |  |  | 182 | 0 | 101 | 0 | 123 | 267 | 233 | 233 |  |
| Avg. Queue (ft) |  |  |  | 27 | 0 | 1 | 0 | 2 | 2 | 15 | 15 |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 8.7 |

Node Location: $\quad$ I-29 \& 13th Ave S (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume | 35 | 1048 | 304 |  | 960 | 279 | 419 | 238 | 453 |  |  |  |
| Delay Time/Veh. (s) | 50.4 | 7.8 | 0.4 |  | 14.2 | 5.6 | 39.0 | 49.2 | 11.8 |  |  |  |
| Max Queue (ft) | 126 | 298 | 165 |  | 393 | 0 | 353 | 352 | 356 |  |  |  |
| Avg. Queue (ft) | 10 | 26 | 0 |  | 53 | 0 | 88 | 86 | 86 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 15.7 |

Node Location: I-29 \& 32nd Ave S (W. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 771 | 313 | 244 | 665 |  |  |  |  | 397 |  | 386 |
| Delay Time/Veh. (s) |  | 14.8 | 3.4 | 40.2 | 5.2 |  |  |  |  | 40.2 |  | 8.7 |
| Max Queue (ft) |  | 347 | 0 | 367 | 243 |  |  |  |  | 277 |  | 281 |
| Avg. Queue (ft) |  | 48 | 0 | 69 | 13 |  |  |  |  | 65 |  | 40 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 16.2 |

Node Location: I-29 \& 32nd Ave S (E. Side)

|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 955 | 219 |  | 735 | 800 | 167 |  | 310 |  |  |  |
| Delay Time/Veh. (s) |  | 3.4 | 1.2 |  | 4.5 | 2.2 | 38.8 |  | 12.1 |  |  |  |
| Max Queue (ft) |  | 296 | 293 |  | 232 | 0 | 299 |  | 309 |  |  |  |
| Avg. Queue (ft) |  | 13 | 19 |  | 11 | 0 | 47 |  | 39 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 5.9 |


|  | Node Location: |  |  | I-29 \& 52nd Ave S (W. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 1052 | 186 |  | 613 | 89 |  |  |  | 579 |  | 543 |
| Delay Time/Veh. (s) |  | 9.4 | 1.7 |  | 7.9 | 0.7 |  |  |  | 26.7 |  | 1.7 |
| Max Queue (ft) |  | 254 | 254 |  | 186 | 266 |  |  |  | 299 |  | 14 |
| Avg. Queue (ft) |  | 29 | 29 |  | 14 | 2 |  |  |  | 64 |  | 0 |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 10.3 |


|  | Node Location: |  |  | I-29 \& 52nd Ave S (E. Side) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB Approach |  |  | WB Approach |  |  | NB Approach |  |  | SB Approach |  |  |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Volume |  | 1113 | 517 |  | 576 | 451 | 127 |  | 107 |  |  |  |
| Delay Time/Veh. (s) |  | 2.7 | 4.0 |  | 3.4 | 1.3 | 37.3 |  | 2.2 |  |  |  |
| Max Queue (ft) |  | 260 | 238 |  | 161 | 161 | 216 |  | 0 |  |  |  |
| Avg. Queue (ft) |  | 7 | 28 |  | 7 | 7 | 32 |  | 0 |  |  |  |
|  |  |  |  |  |  |  | Intersection Delay (sec/veh) |  |  |  |  | 4.4 |

